Irrigation is essential for container production and is typically applied at least once daily during the peak growing season. Scheduling irrigation to avoid both over- and under-irrigation will improve productivity and keep nutrients in place. Under-irrigating plants can result in reduced growth, a longer production period, increased pest pressure on weakened plants, and plant death from desiccation. Since the visible symptoms of under-irrigating are quickly apparent (wilting, desiccation, death), irrigators tend to err on the side of over-irrigating. However, the consequences of over-irrigating are just as detrimental. Over-irrigation can cause reduced growth, a longer production period, increased pest pressure, poor plant quality and even death. Over-irrigation in combination with heavy fertilization can cause overly vigorous plants, also reducing plant quality and often resulting in higher pest pressure on the lush growth.
While under-irrigating cause inadequate water uptake due to a lack of availability, over-irrigation can cause inadequate water uptake due to anaerobic conditions resulting in loss of proper root function, although this is rare.
More commonly over-irrigation leaches nutrients from containers thus affecting plant nutrition, delaying flowering and reducing plant growth and quality. If irrigation water has high alkalinity, as many groundwater sources do, over-irrigating can further exacerbate nutrition problems by increasing substrate pH above the proper range for nutrient availability.
Over-irrigation combined with heavy fertilization to counteract high leaching can lead to even greater problems. Leached nutrients are not only a waste of money but can result in significant environmental problems that increase the probability of regulatory action. Eutrophication is the proliferation of biological organisms in aquatic systems due to excess nutrients, particularly phosphorus and nitrogen, which can cause serious economic and environmental damage. For example, periodically over the past decade toxic algal blooms have negatively affected the drinking water of nearly half a million people who rely on Lake Erie for their water source.
Water is highly undervalued in most areas of the U.S. but that is quickly changing. Over-irrigation wastes water, often relatively
Drilling down
Some important considerations to keep in mind when implementing leaner irrigation practices are the source water quality (especially soluble salts and alkalinity), substrate properties, and local rainfall patterns. Routine monitoring of substrate electrical conductivity (EC) for soluble salts and pH (as an indicator of the effect of water alkalinity) using methods such as the Pour-Thru method (Link 1) is essential when using lean irrigation practices. Water with high soluble salts may require periodic leaching if EC exceeds recommended values of 0.5 to 1.5
It is important to know how water is held in container substrates when deciding how much irrigation water to apply. Some important terms are:
- Substrate Volumetric Moisture Content (SVMC): the amount of water in a container based on
volume of water divided by the volume ofsubstrate . - Container Capacity (CC): the maximum amount of water a container substrate will hold after gravitational drainage.
- Typically 45 – 60% SVMC
- Unavailable Water (UAW): water that is tightly bound to the substrate and cannot be taken up by a plant.
- Typically 25 – 35%
- Available Water (AW): the amount of water that can be taken up by a plant.
- = Container Capacity – Unavailable Water
- Readily Available Water (RAW): the amount of water that can be easily taken up by a plant.
- Typically the first 10-15% of water below container capacity
- Permanent Wilting Point: the point where a plant has extracted all of the available water and is not able to regain turgor.
These terms are usually expressed as a percent and are calculated as the volume of water in the substrate divided by the volume of the substrate times 100, more on how to determine that later.
It is good to know how much AW is in a container so that you don’t over-irrigate. Irrigating more than the AW will cause leaching because the container cannot hold more water than this under normal circumstances. To calculate how much AW a container can hold is pretty straightforward if you know the actual volume (not trade size) of the empty container (usually provided by the manufacturer), the percent moisture at container capacity and the percent unavailable water. The latter two values can be provided by a good substrate supplier or from a substrate analysis by a substrate/soil testing lab. The available water is the difference between these two percentages. It is easy to convert this to irrigation rate drip or spray stake emitters: multiply the AW times the container volume and divide that by the emitter application rate. For example, with
- (0.25 x 3 gal)/(2 gal per hour / 60 min per hour) = 22.5 minute
run time
If you’re using overhead:
- acre-inch to apply = gallons AW x 231 / pr2
- acre-inch to apply = (0.25 x 3) x 231 / (3.14159 x 5.52) = 1.82
- 231 is the constant to convert gallons to cubic inches, 5.5 is the radius in inches of the 3-gallon pots we use.
- Multiply acre-inch by 27,154 to determine the gallons per acre.
It should be obvious that these values are too high for irrigating 3-gallon pots.
We want to avoid not just the permanent wilting point but wilting as well, so we need to irrigate somewhere in the RAW range. RAW differs
- acre-inch to apply = gallons to replace x 231 / pr2
- acre-inch = 0.21 x 231 / (3.14159 x 5.52)
- acre-inch = 0.51
The amount of irrigation needed to replenish AW and 10 and 5 percent water loss for various container sizes with a typical nursery substrate is shown in Table 1. In this example, substrate CC is 43 percent SVMC, UW of 18 percent, making AW 25 percent. Obviously irrigating to replace all of the AW is excessive, even the most extravagant irrigator will question irrigating #1 containers with 1.8 acre-inch of water. Irrigating daily at 5 to 10 percent below CC results in rates similar to those we have found over many years of research (links 2,3,4) for plant daily water use for a range of species with different watering needs from very high to low (Figure 1). Remember that these calculations do not take into account irrigation system distribution uniformity (DU). See links 5 and 6 for methods to determine DU. Divide the calculated irrigation rate by the DU for your irrigation system to determine the actual rate to apply. When using these rates you might be at a zero leaching fraction or possibly under-irrigating depending on the species. We have shown that plants can tolerate limited regular deficit irrigations with no detriment in growth as long as they are brought back to container capacity every second or third day. However, this should be done by skillful irrigation managers who are willing to monitor production systems closely.
Improving water management
Closer attention to irrigation practices will become more important as competition for water continues to increase. Additionally, the consequences of over-irrigation and runoff affecting surrounding water resources will be of greater importance. Link 7 has many additional resources to improve water management. So far we’ve only discussed how much water a substrate can hold and how much to replenish at various depletion levels but not how quickly plants use water. A better understanding of how to determine plant water use will allow irrigation scheduling to be based on the plants rather than a set volume of water. There are several methods to determine how much water a plant has used in a day or a certain time period. It can be done by weight, by determining leaching fraction or using substrate moisture sensors. These will be discussed in an article next month.
Explore the May 2018 Issue
Check out more from this issue and find your next story to read.
Latest from Nursery Management
- FMC, Envu complete sale of FMC’s Global Specialty Solutions business
- Registration for International Plant Trialing Conference now open
- USDA Deputy Secretary Xochitl Torres Small visits Dramm Corp.
- 2025 Farwest Show seeking speakers
- Prices and market segments
- De Vroomen Garden Products announces new agapanthus variety
- Beekenkamp Group and Dümmen Orange explore closer collaboration
- Canadian Tree Nursery Association releases alarming data on Canada's forest restoration challenge