While you are most likely familiar with traditional treatment technologies like mechanical filtration, chlorination, and ozonation, you may not be as familiar with biological and ecological treatment technologies. Innovative ecological treatment methods such slow sand filters, bioreactors, and algal turf scrubbers are low-cost, low-energy technologies harness the power of naturally-occurring microorganisms to remediate nutrients, agrichemicals, and pathogens in water.
Additional benefits of using these technologies include no need for chemical input, no production of unwanted disinfection by-products, no need for technical instrumentation or specially-trained personnel, low operating costs, and minimal maintenance. Installation costs of these systems typically range from several hundred dollars up to around $10,000, depending upon the volume of water to be treated. These costs are substantially lower than installation, maintenance, and labor costs of other disinfestation and remediation technologies.
Slow sand filters
European horticultural growers have been using slow sand filters (SSFs) since the early 1990s to remove plant pathogens from recycled irrigation water. However, the technology is actually much older than that — SSFs have been used since the early 1800s to clean contaminants from water for human consumption. Today, SSFs at nurseries are primarily used to remove plant pathogens, including Phytophthora, Pythium, and Fusarium. However, recent research has also shown that slow filters containing substrates other than sand (such as pumice and
SSFs consist of three major components (Figure 1):
- Sand (or other substrate, top layer) – facilitates the purification process, typically about 2 to 4½ feet deep
- Gravel (middle layer) – supports the sand bed and prevents sand from clogging the
underdrainage - Underdrainage (bottom layer) – Captures cleaned water and allows for movement of water through the system
The water reservoir is placed on top of the sand layer and should be maintained at a depth of about 3 to 5 feet to maintain the necessary water pressure to ensure consistent flow through the SSF. Recommended filtration rates range from about 150 to 350 gallons per day per square yard of surface area. So, if you have a 15-foot diameter tank installed, you may be able to treat up to about 7,000 gallons of water per day onsite. While faster flow rates may still achieve sufficient remediation, the filters would be more likely to clog and thus require more frequent maintenance. The ability of the filter to treat water at faster flow rates depends upon the quality of the water entering the filter. If the incoming water was previously held in a settling tank or pond, or has been pre-filtered to remove any organic solids or sediment, higher flow rates can be achieved. The quality of the sand is also critical for optimal treatment —
How exactly does a bunch of sand and rock remove plant destroyers like Phytophthora? Well, we’ve got microorganisms to thank for that. Over the course of about three to four weeks, a biologically active film layer naturally forms in the top few inches of the SSF. These microorganisms help to trap and degrade pathogen contaminants. Periodic maintenance, including the removal of the first few inches of sand, is required to maintain the designed flow rates through the SSF. Installation of two SSFs in parallel is recommended for horticultural applications — this way, while one SSF is shut down for maintenance, the other can remain in operation. However, remember to start cycling water through the alternate filter about a month in advance of use to allow that crucial microbial layer to form at the surface of the SSF.
Bioreactors
Agricultural denitrifying bioreactors, sometimes called carbon beds or carbon walls, are lined trenches or containers filled with a carbon-rich material, such as woodchips or woody substrate. Bioreactors are commonly used to remediate nitrate-rich irrigation
The typical bioreactor layout (Figure 2) allows for irrigation drainage water to enter the bioreactor on one side, flow horizontally through the bioreactor via a series of perforated pipe, and exit the bioreactor at the opposite end. Naturally-occurring microorganisms populate the carbon-rich woody material and reduce nitrate as part of their everyday routine. Flow control structures — one at the bioreactor entrance to divert water and another at the exit to control water height — may be used. Stop logs in the control structures may be raised or lowered to control
While bioreactors are extremely effective at removing nitrate from water (with removal efficiencies up to 100 percent), unintended negative consequences of bioreactor use may include the release of greenhouse gases. These side effects are currently being
Algal turf scrubbers
Algal turf scrubber (ATS) systems consist of screens covered with attached algae (Figure 3). Nutrient-rich water is typically pumped over these screens in a shallow trough, or even in open water. The attached algae use the power of the sun to uptake nutrients like nitrogen and phosphorus. Because algae grow so quickly, this technology removes nutrients at a very high rate. It is important to remove (scrape off) the algae from the screens about once a week, as this will rejuvenate the algal community and promote high growth rates. The harvested algae is incredibly rich in nutrients, and thus can be used as a substrate amendment, fertilizer, or biofuel feedstock. These ATS systems have been shown to remove almost a pound of nitrogen per 10 square yards per day. Optimization of ATS systems depend on several factors, including flow rate, flow type (pulsed vs. continuous), and pH. Research on how these factors influence efficiency of ATS systems is currently being conducted.
Combination treatments
While many single traditional treatment technologies, as well as the ecological technologies described above, can effectively remediate common agricultural contaminants from water, the combination of several of these technologies in series or “treatment trains” may result in the most efficient contaminant removal, aka the most bang for your buck. Unfortunately, there is no single treatment system out there that will effectively manage all types of contaminants. The types of technologies that should be used in combination treatment trains
Reliable access to fresh water is an increasing concern for many nursery growers, as water supplies continue to decline due to overuse and increased incidence of drought. Additionally, more regulations on water withdrawals, water-use efficiency, and quality of irrigation runoff water entering surface waters are being implemented. Therefore, more and more growers are looking into ways to remediate and reuse their irrigation runoff water onsite. The ecological treatment methods discussed in this article are not only low-cost and
Explore the January 2018 Issue
Check out more from this issue and find your next story to read.
Latest from Nursery Management
- FMC, Envu complete sale of FMC’s Global Specialty Solutions business
- Registration for International Plant Trialing Conference now open
- USDA Deputy Secretary Xochitl Torres Small visits Dramm Corp.
- 2025 Farwest Show seeking speakers
- Prices and market segments
- De Vroomen Garden Products announces new agapanthus variety
- Beekenkamp Group and Dümmen Orange explore closer collaboration
- Canadian Tree Nursery Association releases alarming data on Canada's forest restoration challenge